Generalising the planar Pythagorean-hodograph quintic spiral
نویسنده
چکیده
Abstract Spiral segments are useful in the design of fair curves. They are important in CAD/CAM applications, the design of highway and railway routes, trajectories of mobile robots and other similar applications. The quintic Pythagorean hodograph (PH) curve discussed in this technical report is polynomial; it has the attractive properties that its arc-length is a polynomial of its parameter, and the formula for its offset is a rational algebraic expression. This paper generalises earlier results on planar PH quintic spiral segments.
منابع مشابه
Topological criterion for selection of quintic Pythagorean-hodograph Hermite interpolants
A topological approach to identifying the “good” interpolant among the four distinct solutions to the first–order Hermite interpolation problem for planar quintic Pythagorean–hodograph curves is presented. An existence theorem is proved, together with a complete analysis of uniqueness/non– uniqueness properties. A simple formula for finding the “good” solution, without appealing to curve fairne...
متن کاملG Pythagorean hodograph quintic transition between two circles
Walton & Meek [13] obtained fair G Pythagorean hodograph (PH) quintic transition Sand C-shaped curves connecting two circles. It was shown that an S-shaped curve has no curvature extremum and a Cshaped curve has a single curvature extremum. We simplified and completed their analysis. A family of fair PH quintic transition curves between two circles has been derived. We presented an algorithm wi...
متن کاملEmploying Pythagorean Hodograph Curves for Artistic Patterns
In this paper we will present a novel design element creator tool for the digital artist. The purpose of our tool is to support the creation of vines, swirls, swooshes and floral components. To create visually pleasing and gentle curves we employ Pythagorean Hodograph quintic curves to join a hierarchy of control circles defined by the user. The control circles are joined by spiral segments wit...
متن کاملIdentification and "reverse engineering" of Pythagorean-hodograph curves
Methods are developed to identify whether or not a given polynomial curve, specified by Bézier control points, is a Pythagorean–hodograph (PH) curve — and, if so, to reconstruct the internal algebraic structure that allows one to exploit the advantageous properties of PH curves. Two approaches to identification of PH curves are proposed. The first is based on the satisfaction of a system of alg...
متن کاملCircle to Circle Transition with a Single Ph Quintic Spiral
This paper theoretically describes how to compose a single Pythagorean hodograph (PH) quintic Bézier spiral segment, between two circles with one circle inside the other. A spiral is free of local curvature extrema, making spiral design an interesting mathematical problem with importance for both physical and aesthetic applications. The curvature of a spiral varies monotonically with arc-length...
متن کامل